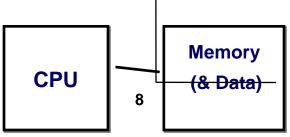
Architecture & Pipelining (PIC 16F877A)

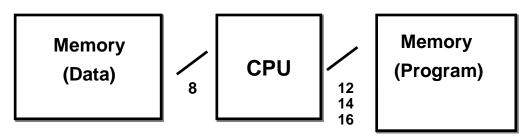
What is PIC?


 The term PIC or Peripheral Interface Controller, has been coined by Microchip Technology Inc.

 Low-end range, mid-range and high end range of controllers.

PIC Architecture: Background

We're used to the <u>Von-Neuman Architecture</u>


- Used in: 80X86 (PCs), 8051, 68HC11, etc.)
- Only one bus between CPU and memory
- RAM and program memory share the same bus and the same memory, and so must have the same bit width
- Bottleneck: Getting instructions interferes with accessing RAM

PIC Architecture: Background

PICs use the Harvard Architecture

- Used mostly in RISC CPUs (we'll get there)
- Separate program bus and data bus: can be different widths!
- For example, PICs use:
 - Data memory (RAM): a small number of <u>8bit</u> registers
 - Program memory (ROM): 12bit, 14bit or 16bit wide (in EPROM, FLASH, or ROM)

CISC

Traditionally, CPUs are "CISC"

- Complex Instruction Set Computer (CISC)
- Used in: 80X86, 8051, 68HC11, etc.
- Many instructions (usually > 100)
- Many, many addressing modes
- Usually takes more than 1 internal clock cycle
 (T cycle) to execute
- Example:

MC68HC05:

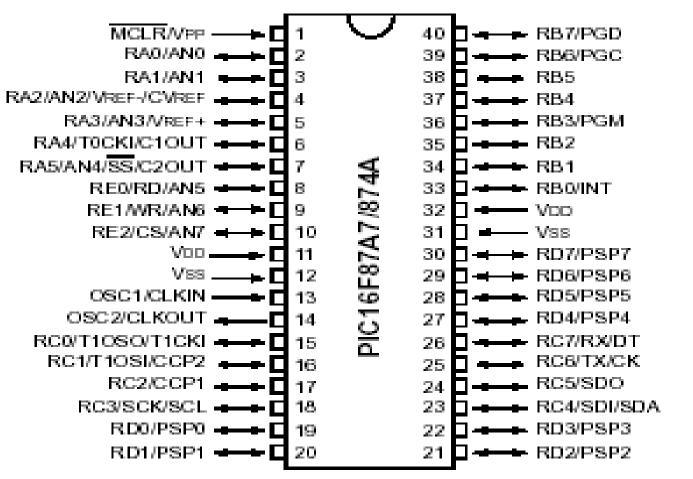
1000	1100
0101	0101

RISC

PICs and most Harvard chips are "RISC"

- Reduced Instruction Set Computer (RISC)
- Used in: SPARC, ALPHA, Atmel AVR, etc.
- ✤ Few instructions (usually < 50)</p>
- Only a few addressing modes
- Executes 1 instruction in 1 internal clock cycle (Tcyc)
- Example:

PIC16CXXX:


1100XX 01010101

What is New in PIC?

- High performance RISC CPU with 35 no. of instruction set only
- Harvard Architecture
- Pipelined Instructions
- And a large number of Peripherals In-built

Pin Diagram

PDIP (40 pin)

Features

- 8kB of flash program memory
- 368bytes of Data memory
- 256-EEPROM data memory
- 15 Interrupts
- In-circuit programming
- 3 internal hardware timers

- Capture/Compare/PW
 M modules
- Up to 8 channels of 10-Bit A/D
- Built-in USART for serial communication
- 5 digital I/O ports (Up to 22 lines)

I/O Ports

- PIC 16F877A has FIVE I/O Ports
- A total of 33 pins are used for I/O operations.

PORT A

- Port A is 6 bit wide and bi-directional.
- Its corresponding data direction register is TRISA.
- If TRISA port pin is set to 1, corresponding port A pin will act as an input pin and vice versa.
- Port A is used for analog inputs.

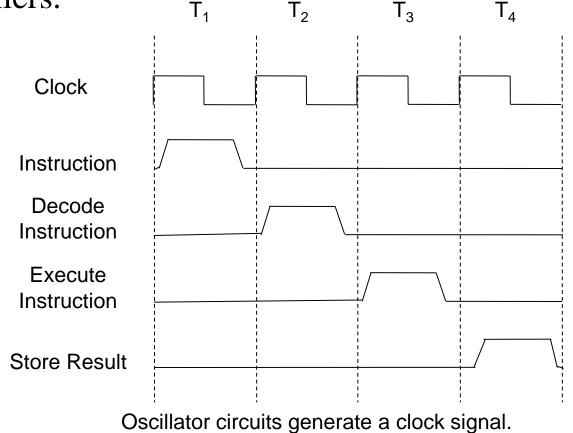
Port B

- Port B is 8 bit wide and bi-directional.
- Its corresponding data direction register is TRISB.
- If TRISB port pin is set to 1, corresponding port B pin will act as an input pin and vice versa.
- Port B is used for Data Transmission.

Port C

- Port C is 8 bit wide and bi-directional.
- Its corresponding data direction register is TRISC.
- If TRISC port pin is set to 1, corresponding port C pin will act as an input pin and vice versa.
- Port C is used for control registers(serial communication, I2C functions, serial data transfer).

Port D


- Port D is 8 bit wide and bi-directional.
- Its corresponding data direction register is TRISD.
- If TRISD port pin is set to 1, corresponding port D pin will act as an input pin and vice versa.
- Port D is used as Data port

Port E

- Port E is 3 bit wide . They are for read, write and chip select operation.
- Each pin is individually configurable as inputs and outputs.
- Port E is generally used for controlling purposes.

Machine Cycle

4 cycles per4 cycles per instruction on the PIC16F87x micro controllers. instruction on the PIC16F87x micro controllers.

Calculations

- A Machine cycle is the time taken for a data transfer from or to memory/ I/O Ports.
- Machine cycle is calculated using the formula: Clock Frequency=6.144MHz
 Machine cycle frequency= 6.144 MHz /4
 Hence 1 Machine cycle(Time taken for a data transfer)= 1/T

= 4/ 6.144 MHz

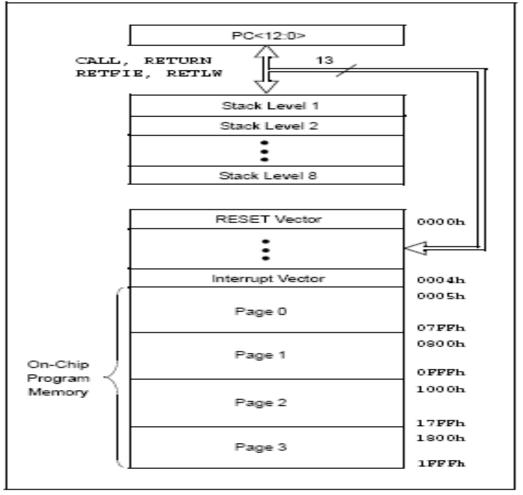
 $= 0.651 \ \mu s$

Instruction Cycle

- An instruction cycle is the time taken to complete an instruction.
- All instructions in 16F877A are single cycle instructions except for Branching instruction. They take two machine cycles to complete an instruction.

PIC overview

Different PICs have different on-board peripherals some common peripherals are:


- * 3 Timers (0 & 2- 8bits, 1-16 bits)
- 2 Compare/Capture/PWM Modules
- Analog to Digital Converters (ADC) (8, 10 and 12bit, 50ksps)
- Serial communications: UART (RS-232C), SPI, I²C, CAN
- Pulse Width Modulation (PWM) (10bit)
- Voltage Comparators
- Voltage Reference Modules
- MSSP Master Synchronous Serial Port
- I2C (Master and Slave)
- SPI (Master and Slave)
- Watchdog timers, Brown out detect, LCD drivers

Instructions

Memory Organisation

FIGURE 2-1: PIC16F876A/877A PROGRAM MEMORY MAP AND STACK

Data Memory Organisation

- The data memory partitioned into General Purpose registers and Special Function Registers.
- Bits RP1 and RP0 are the bank select bits.

RP1	RP0	Bank
0	0	0
0	1	1
1	0	2
1	1	3

	A	File \ddress	. ,	File Address		File Address		File Address
Indirect ad	ddr. ^(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR		01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	-	02h	PCL	82h	PCL	102h	PCL	182h
STATU	IS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR		04h	FSR	84h	FSR	104h	FSR	184h
PORT		05h	TRISA	85h		105h		185h
PORT	в	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORT	C	07h	TRISC	87h		107h		187h
PORTE	D ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE	(1)	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLAT	ΓH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCC	DN	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1		0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1	IL	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1	Н	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CO		10h		90h		110h		190h
TMR		11h	SSPCON2	91h		111h		191h
T2CO		12h	PR2	92h		112h		192h
SSPBL		13h	SSPADD	93h		113h		193h
SSPCC		14h	SSPSTAT	94h		114h		194h
CCPR		15h		95h		115h		195h
CCPR'		16h		96h	General	116h	General	196h
CCP1C		17h		97h	Purpose	117h	Purpose	197h
RCST		18h	TXSTA	98h	Register	118h	Register	198h
TXRE		19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCRE		1Ah		9Ah		11Ah 11Bh		19Ah
CCPR		1Bh	CMCON	9Bh		11Bh 11Ch		19Bh
CCPR CCP2C		1Ch 1Dh	CMCON CVRCON	9Ch 9Dh		11Ch 11Dh		19Ch 19Dh
ADRES		1Eh	ADRESL	9Eh		11Eh		19Eh
ADCO		1Fh	ADCON1	9Fh		11Fh		19Fh
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		20h		A0h		120h		1A0h
				AUT				IAUG
Genera			General		General		General	
Purpos Registe			Purpose Register		Purpose Register		Purpose Register	
-			80 Bytes		80 Bytes		80 Bytes	4556
96 Byte	es		,	EFh	,	16Fh		1EFh 1F0h
			accesses	F0h	accesses	170h	accesses 70h - 7Fh	TFUN
		7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	/UN-/FN	1FFh
Bank 0)		Bank 1		Bank 2		Bank 3	

Timers

PIC16F877A has 3 Timers

Timer 0 - 8 bit

can be used as a Timer/counter

⋆ Timer 1 – 16 bit

can be used as a Timer/counter

• Timer 2 - 8 bit Timer

can be used as the PWM time-base for the PWM mode of the CCP module.

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N						
	bit 7							bit 0						
bit 7-6	Unimplemented: Read as '0'													
bit 5-4	T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits													
	11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value													
bit 3	T10SCEN: Timer1 Oscillator Enable Control bit													
	 1 = Oscillator is enabled 0 = Oscillator is shut-off (the oscillator inverter is turned off to eliminate power drain) 													
bit 2	T1SYNC:	Timer1 Exte	ernal Clock li	nput Synchr	onization Contr	ol bit								
	When TMF													
		-	e external cl nal clock ing											
	When TMF		nar ciocit ing	, at										
	This bit is i	gnored. Tin	ner1 uses th	e internal clo	ock when TMR	1CS = 0.								
bit 1	TMR1CS:	Timer1 Clo	ck Source S	elect bit										
		al clock from I clock (Fos		10S0/T1CF	(I (on the rising	edge)								
bit 0	TMR10N:	Timer1 On	bit											
	1 = Enable													
	o = Stops	l imer1												
	Lanard													
	Legend:													

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	oit, read as 'O'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Timer 1

- * The data registers of Timer 1 are TMR1H and TMR1L.
- The 16 bit value to be loaded in the timer is given to Data registers
- * The Control register is T1CON.
- The timer ON and oscillator enable operations are controlled through the control register.
- To determine if the timer has completed its operation, the timer overflow bit TMR1IF of the PIR1 register is checked continuously.

USART

- Universal synchronous asynchronous receiver transmitter is also known as a serial communication interface.
- USART can be configured in the following modes:
 - Asynchronous FULL DUPLEX
 - synchronous HALF DUPLEX

Serial Communication

- For serial Communication, the SFR involved are TXSTA, TXREG, RCSTA,,RCREG and SPBRG.
- SPBRG is used to set the required baud rate.
- In TXSTA,TXEN is set high to enable transmission.
- The transmitted data is stored in a temporary buffer,TXREG.
- In RCSTA, SPEN and CREN are set high to enable reception.
- The received data is stored in a temporary buffer, RCREG.

REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0
	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D
	bit 7							bit 0
bit 7	CSRC: Cloc	k Source Se	elect bit					
	Asynchronou Don't care	us mode:						
	Synchronous							
	1 = Master n 0 = Slave ma				m BRG)			
bit 6	TX9: 9-bit Tr			,				
	1 = Selects §							
	0 = Selects 8							
bit 5	TXEN: Tran 1 = Transmit		bit					
	0 = Transmit							
	Note: SREN	//CREN ove	rrides TXEN	in SYNC m	iode.			
bit 4	SYNC: USA		elect bit					
	1 = Synchro							
bit 3	0 = Asynchro							
bit 2	Unimplement BBCU: Uich							
DIL 2	BRGH: High Asynchronou		Select bit					
	1 = High spe							
	0 = Low spe	ed						
	Synchronous Unused in th							
bit 1	TRMT: Trans		gister Statu	s bit				
	1 = TSR emp 0 = TSR full	pty						
bit O	TX9D: 9th bi	t of Transmi	Data ora	ha Parity bi				
UIL U	ASD. SHID	tor nansmi	it Data, carr	be Faility bi				

REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x	_
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	
bit 7							bit 0	

bit 7	SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RC7/RX/DT and RC8/TX/CK pins as serial port pins) 0 = Serial port disabled
bit 6	RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception
bit 5	SREN: Single Receive Enable bit <u>Asynchronous mode:</u> Don't care <u>Synchronous mode - Master:</u> 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Symphones mode - Slave:
	Synchronous mode - Slave: Don't care
bit 4	CREN: Continuous Receive Enable bit <u>Asynchronous mode:</u> 1 = Enables continuous receive 0 = Disables continuous receive <u>Synchronous mode:</u> 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)
bit 3	 0 = Disables continuous receive ADDEN: Address Detect Enable bit <u>Asynchronous mode 9-bit (RX9 = 1):</u> 1 = Enables address detection, enables interrupt and load of the receive buffer when RSR<8> is set a = Disables address detection, ell butto are provided and picth bit are be used as active bit.
bit 2	0 = Disables address detection, all bytes are received, and ninth bit can be used as parity bit FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receive next valid byte) 0 = No framing error
bit 1	OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN) 0 = No overrun error
bit O	RX9D: 9th bit of Received Data (can be parity bit, but must be calculated by user firmware)
	I

Legend:		
Legend: R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	N/A

X = value in SPBRG (0 to 255)

TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bi	t 4	Bit	3	Bit 2	2	Bit 1	Bit		Value on POR, BOR	a	alue on II other ESETS
98h	TXSTA	CSRC	TX9	TXEN	SY	NC	_		BRG	н	TRMT	TX9	D	0000 -03	LO 00	00 -010
18h	RCSTA	SPEN	RX9	SREN	CR	EN	ADD	EN	FER	R	OERR	RX9	D	000 000	00 x	x000 00
99h	SPBRG	Baud Ra	te Genera	ator Reg	ister								(000 000		00 0000
				98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010	=
					RCSTA	SPEN		SREN	CREN	ADDE		OERR			0000 0002	-
				99h	SPBRG	Baud R	ate Genera	ator Regi	ster					0000 0000	0000 0000	7

 99h
 SPBRG
 Baud Rate Generator Register

 Legend:
 x
 - unknown, - - unimplemented, read as '0'. Shaded cells are not used by the BRG.

FOR BAUD RATE:

For asynchronous mode, Baud rate=Fosc / 64(x+1)For synchronous mode, Baud rate=Fosc / 4(x+1)

FOR RECEPTION:

Check RCIF flag till it is set. This indicates that the data is completely received in the RCREG. Move this value to working register for further manipulation.

FOR TRANSMISSION:

To transmit the calculated data, move the value to TXREG. Check the TXIF flag till it is set. This indicates that the data is completely transmitted out.

REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	
bit 7							bit O	

PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit⁽¹⁾ bit 7

A read or a write operation has taken place (must be cleared in software)

o = No read or write has occurred

Note 1: PSPIF is reserved on PIC16F873A/876A devices; always maintain this bit clear.

- bit 6 ADIF: A/D Converter Interrupt Flag bit
 - An A/D conversion completed
 - o = The A/D conversion is not complete
- bit 5 RCIF: USART Receive Interrupt Flag bit
 - The USART receive buffer is full
 - o = The USART receive buffer is empty
- blt 4 TXIF: USART Transmit Interrupt Flag bit
 - The USART transmit buffer is empty
 - o = The USART transmit buffer is full
- blt 3 SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit
 - 1 The SSP interrupt condition has occurred, and must be cleared in software before returning. from the Interrupt Service Routine. The conditions that will set this bit are:
 - SPI
 - A transmission/reception has taken place.
 - I²C Slave
 - A transmission/reception has taken place.
 - I²C Master
 - A transmission/reception has taken place.
 - The initiated START condition was completed by the SSP module.
 - The initiated STOP condition was completed by the SSP module.
 - The initiated Restart condition was completed by the SSP module.
 - The initiated Acknowledge condition was completed by the SSP module.
 - A START condition occurred while the SSP module was idle (Multi-Master system).
 - A STOP condition occurred while the SSP module was idle (Multi-Master system).
 - o = No SSP Interrupt condition has occurred.
- blt 2 CCP1IF: CCP1 Interrupt Flag bit

Capture mode:

- 1 = A TMR1 register capture occurred (must be cleared in software)
- o = No TMR1 register capture occurred

Compare mode:

- A TMR1 register compare match occurred (must be cleared in software)
- o = No TMR1 register compare match occurred

PWM mode:

Unused in this mode

R = Readable bit

- TMR2IF: TMR2 to PR2 Match Interrupt Flag bit bit 1
 - TMR2 to PR2 match occurred (must be cleared in software)
 - o = No TMR2 to PR2 match occurred

bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit

1 = TMR1 register overflowed (must be cleared in software)

W - Writable bit

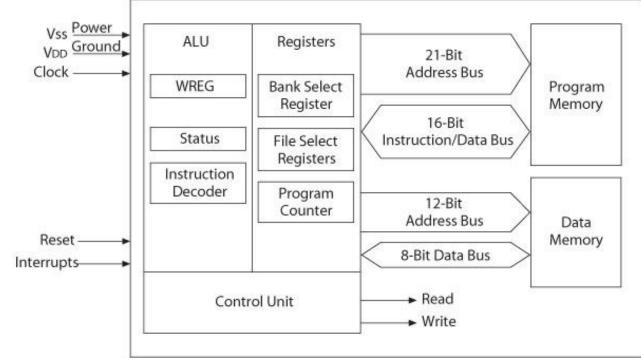
o = TMR1 register did not overflow

Legend:

- U Unimplemented bit, read as '0'
- n = Value at POR '1' = Bit is set
- '0' = Bit is cleared
- x = Bit is unknown

Interrupts

- PIC16F877A has 15 sources of interrupts.
- Only one vector location is allocated for the interrupts.
- The Global interrupt enable bit is set, so that any interrupt can be acknowledged.
- Regardless of the Global enable bit, the user should ensure, the appropriate interrupt flag bits that needs to be executed, is also set.

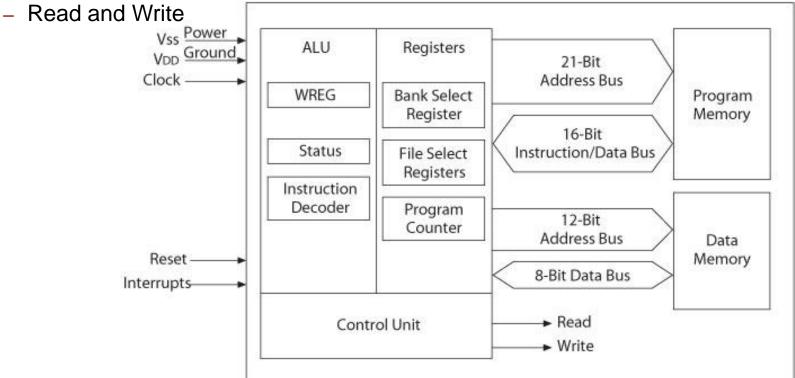

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	TMROIE	INTE	RBIE	TMROIF	INTF	RBIF
	bit 7							bit 0
bit 7	GIE: Globa	al Interrupt E	nable bit					
	1 = Enables all unmasked interrupts 0 = Disables all interrupts							
bit 6	PEIE: Perij	pheral Interr	upt Enable b	it				
	1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts							
oit 5	TMR0IE: T	MR0 Overfi	ow Interrupt	Enable bit				
		s the TMR0 as the TMR0						
oit 4	INTE: RB0	/INT Externa	al Interrupt E	nable bit				
	1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt							
vit 3	RBIE: RB I	Port Change	e Interrupt Er	nable bit				
	1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt							
it 2	TMR0IF: T	MR0 Overfic	ow Interrupt	Flag bit				
		~	overflowed not overflow	3	ared in soft	ware)		
xit 1	INTF: RB0	/INT Externa	al Interrupt F	lag bit				
	1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur							
vit O	RBIF: RB F	Port Change	Interrupt Fla	ag bit				
	1 = At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to set the bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared (must be cleared in software).							
			B4 pins hav	e changed s	state			
	Legend:							
	R = Reada	hle hit	W = W	ritable hit	U = Unin	nlamantari l	hit read as	·0·

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

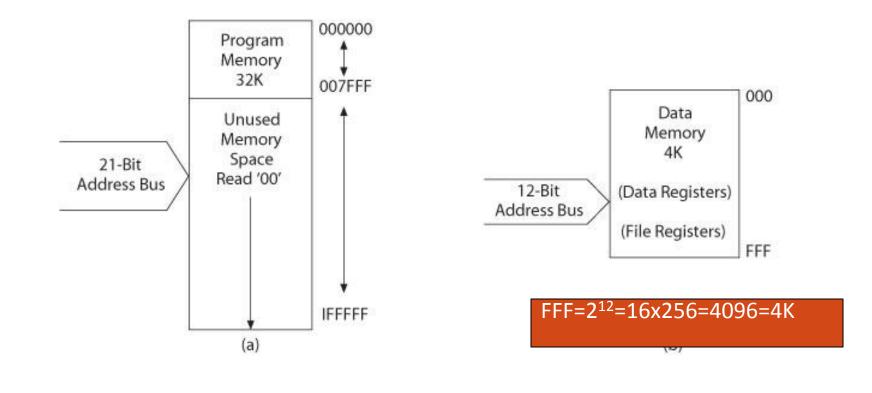
PIC18F - Address Buses

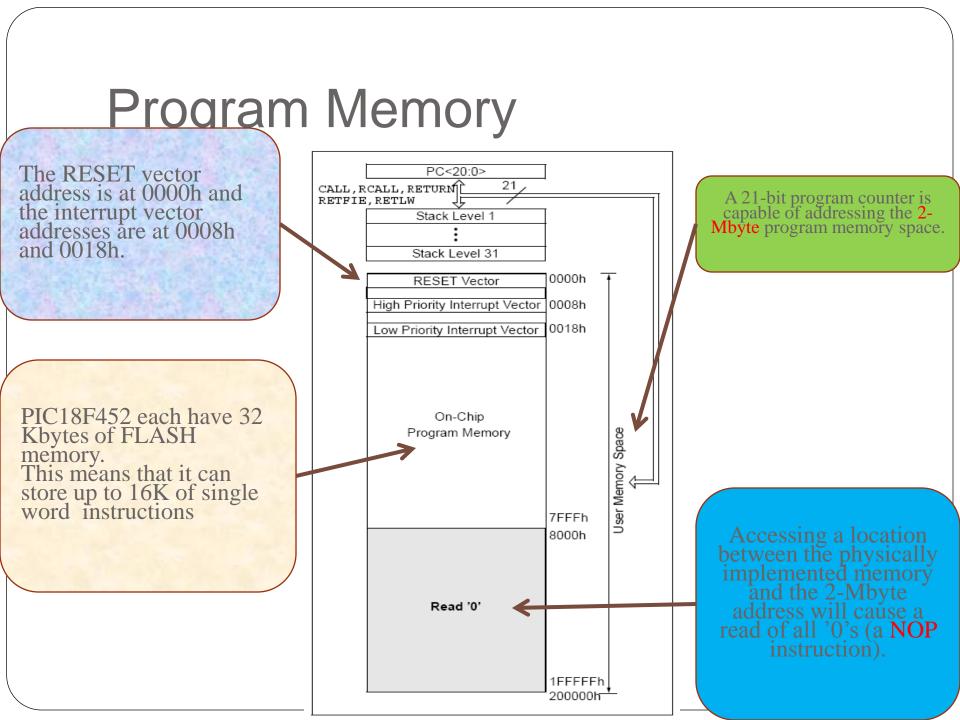
- Address bus
 - 21-bit address bus for program memory addressing capacity: 2 MB of memory
 - 12-bit address bus for data memory addressing capacity: 4 KB of memory



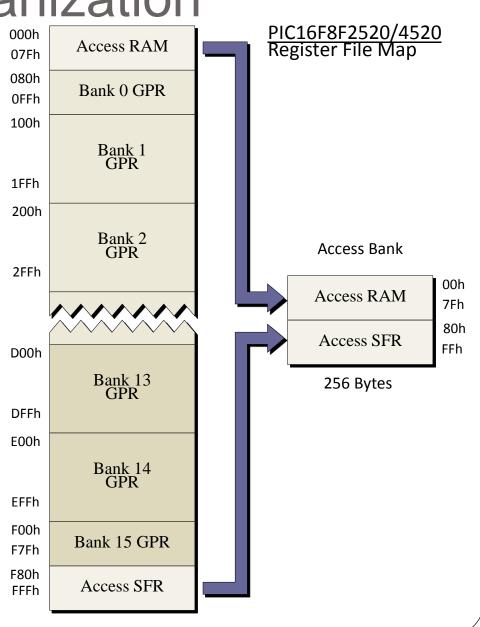
Data Bus and Control Signals

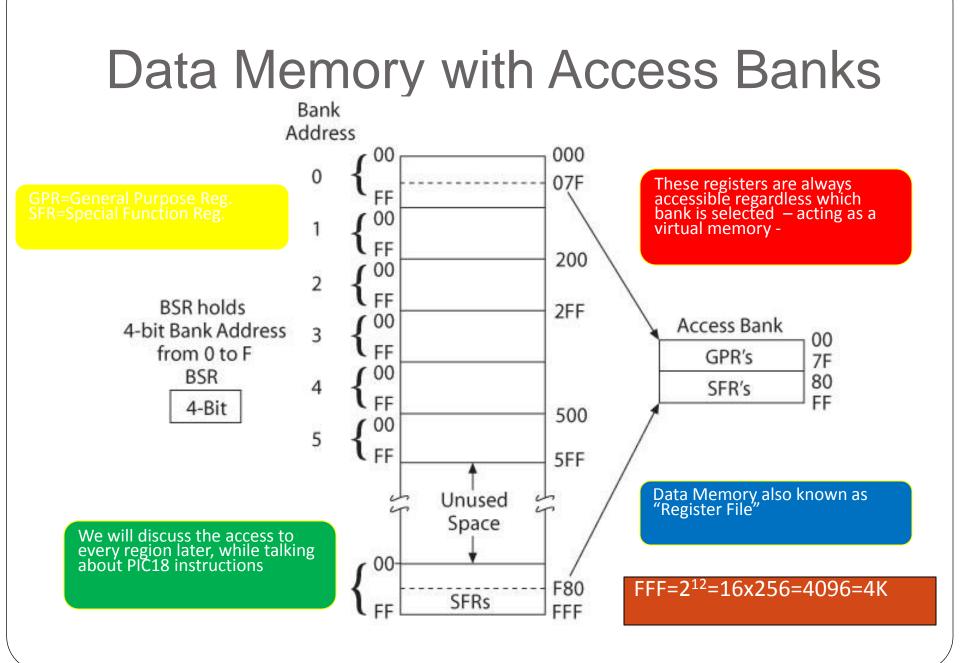
Data bus


- 16-bit instruction/data bus for program memory
- 8-bit data bus for data memory

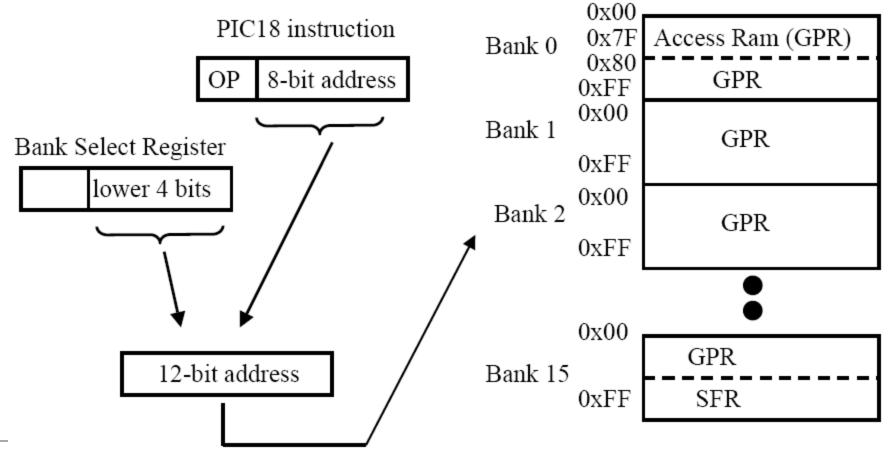

Control signals

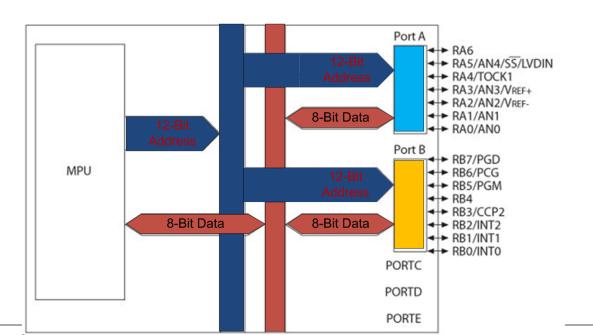
PIC18F452/4520 Memory


- Program memory with addresses (Flash)
- Data memory with addresses

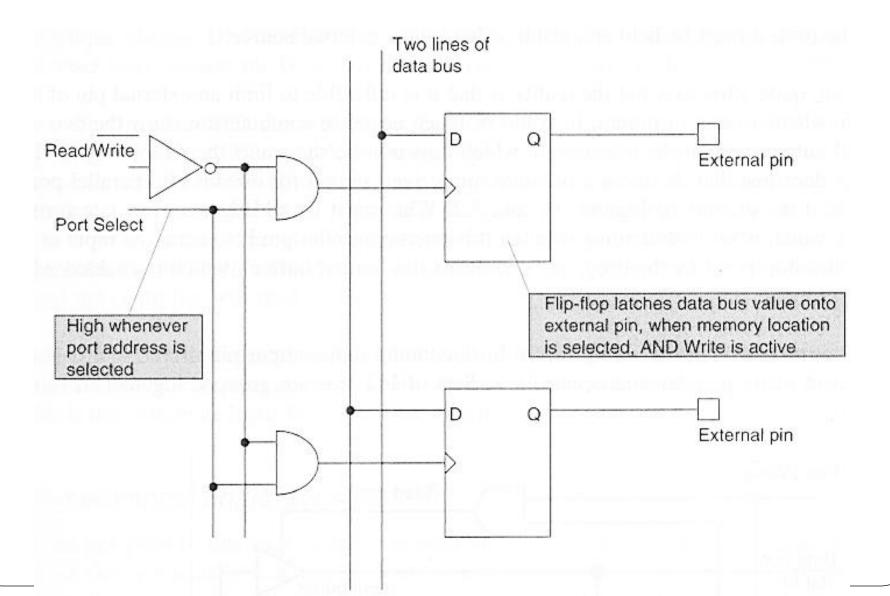


Data Memory Organization

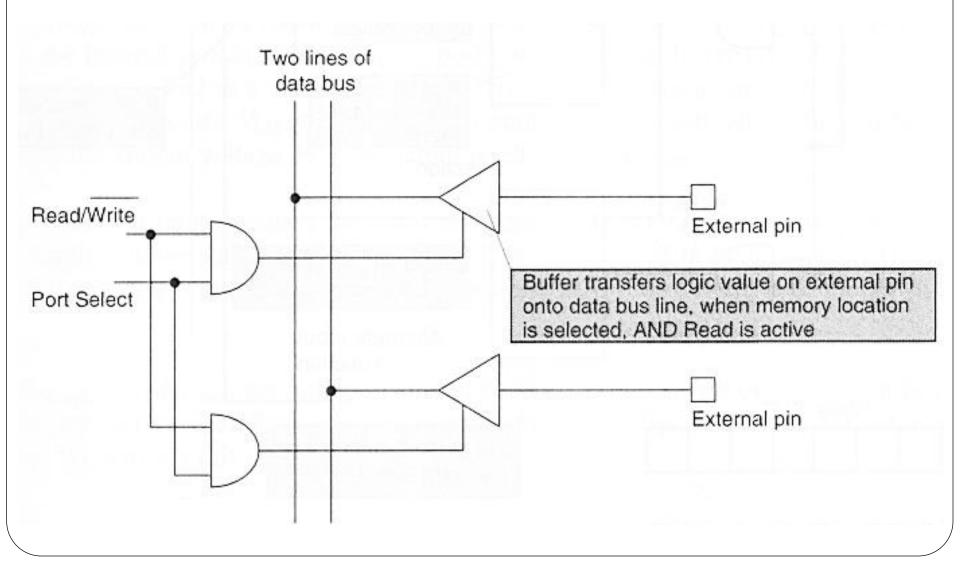

- Data Memory up to 4k bytes
- Divided into 256 byte banks
- Half of bank 0 and half of bank 15 form a virtual bank that is accessible no matter which bank is selected

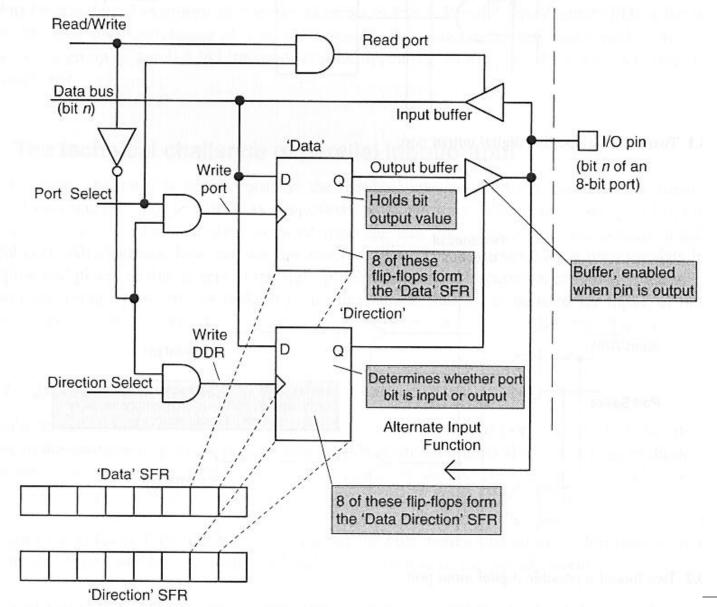

Accessing Data Memory

 The machine code for a PIC18 instruction has only 8 bits for a data memory address which needs 12 bits. The Bank Select Register (BSR) supplies the other 4



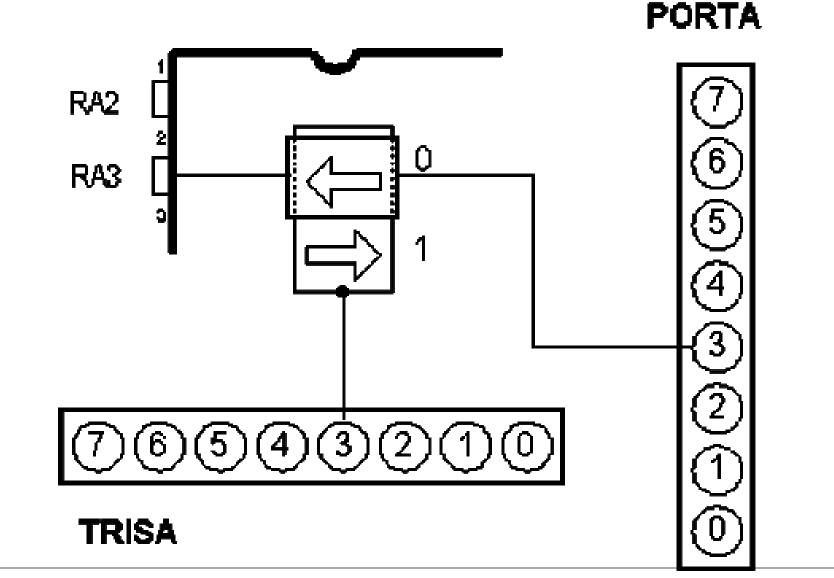
PIC18F452 I/O Ports


- Five I/O ports
 - PORT A through PORT E
 - Most I/O pins are multiplexed
 - Generally have eight I/O pins with a few exceptions
 - Addresses already assigned to these ports in the design stage
 - Each port is identified by its assigned SFR


Parallel I/O Output Structure

Parallel I/O Input Structure

Parallel I/O Combined I/O Structure


Parallel I/O ports Main Features

- Simple memory mapped access
- Can be configured through software as either input or output
- Ability to set or reset individual bits
- Can have internal pull-ups
- Can drive small loads like LEDs
- Can be multifunction
- Different capability for pins (i.e. larger current)

Parallel I/O ports

- For most ports, the I/O pin's direction (input or output) is controlled by the data direction register TRISx (x=A,B,C,D,E): a '1' in the TRIS bit corresponds to that pin being an input, while a '0' corresponds to that pin being an output
- The PORTx register is the latch for the data to be output. Reading PORTx register read the status of the pins, whereas writing to it will write to the port latch.
- Example: Initializing PORTB (PORTB is an 8-bit port. Each pin is individually configurable as an input or output).
 - bcfSTATUS, RP0; select bank0bcfSTATUS, RP1clrfPORTBis clear PORTB output data latchesbsfSTATUS, RP0is select bank1movlw0xCFis value used to initialize data directionmovwfTRISBis PORTBis portB
 - ; PORTB<3:0>=inputs

Relationship between TRIS and PORT Registers

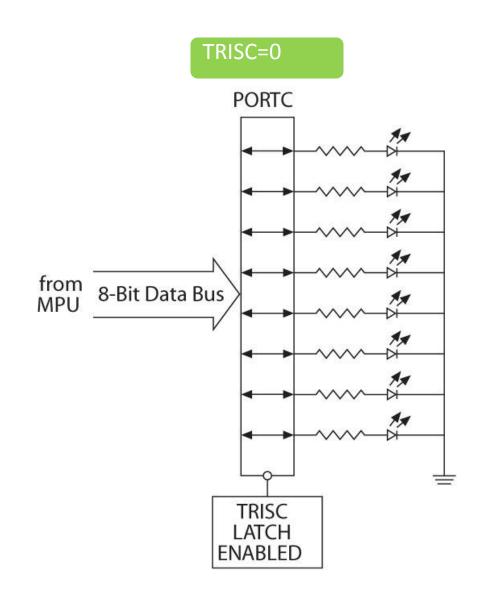


Illustration: Displaying a Byte at an I/O Port (1 of 5)

- Problem statement:
 - Write instructions to light up alternate LEDs at PORTC.
- Hardware:
 - PORTC
 - bidirectional (input or output) port; should be setup as output port for display
 - Logic 1 will turn on an LED in Figure 2.10.

Illustration (2 of 5)

- Interfacing LEDs to PORTC
- Port C is F82H
- Note that PORT C is set to be an output!
- Hence, TRISC (address 94H) has to be set to 0

Illustration (3 of 5)

- Program (software)
 - Logic 0 to TRISC sets up PORTC as an output port
 - Byte 55H turns on alternate LEDs
 - MOVLW 00 ;Load W register with 0
 - MOVWF TRISC, 0
 - MOVLW 0x55
 - MOVWF PORTC,0
- ;Set up PORTC as output
- ;Byte 55H to turn on LEDS
 - ;Turn on LEDs
 - SLEEP ;Power down